CONCERNING ARCWISE CONNECTEDNESS AND THE EXISTENCE OF SIMPLE CLOSED CURVES IN PLANE CONTINUA

BY CHARLES L. HAGOPIAN(1)

1. Introduction. If a compact metric continuum is locally connected, then it is arcwise connected. However, a semi-locally-connected compact metric continuum, even when lying in the plane, may fail to be arcwise connected [8]. A continuum M is said to be aposyndetic at a point p of M with respect to a set N in $M-\{p\}$ if there exist an open set U and a continuum H in M such that $p \in U \subset H \subset M - N$. A continuum M is said to be aposyndetic at a point p if for each point p in $M-\{p\}$, p is aposyndetic at p with respect to p. If p is aposyndetic at each of its points, then p is said to be aposyndetic. A compact continuum is aposyndetic if and only if it is semi-locally-connected [2]. A plane continuum p is connected im kleinen at a point p of p if and only if for each pair of points p and p in p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p if p is aposyndetic at p with respect to p is aposyndetic at p with respect to p if p is aposyndetic at p is aposyndetic at

In this paper arcwise connectedness is established for certain nonconnected im kleinen aposyndetic compact plane continua. If an aposyndetic compact plane continuum M contains a finite set of points F such that for each point x in M-F, there exist two points y and z in F such that M is not aposyndetic at x with respect to $\{y, z\}$, then M is arcwise connected. It is also proved that each point of M is in a simple closed curve which is contained in M and if the set F consists of two points, then M is cyclicly connected (that is, for any points a and b in M, there is a simple closed curve in M which contains $\{a, b\}$). Arcwise connectedness is also established for certain nonaposyndetic plane continua. If a compact plane continuum M is semi-locally-connected at all except a finite number of its points and is such that for each point x in M, M is either not aposyndetic or not semi-locallyconnected at x, then M is arcwise connected. For a point x of a continuum M, F. B. Jones defines K_x to be the closed (not necessarily connected) set consisting of x and all points y in $M - \{x\}$ such that M is not aposyndetic at x with respect to y [3, Theorem 2]. Here it is proved that if M is a compact plane continuum such that for each point x of M, the set K_x is finite, and M is either not semi-locallyconnected or not aposyndetic at x, then each point of M is in a simple closed curve which is contained in M. Let M be a compact plane continuum which contains a point y such that for each point x in $M-\{y\}$, M is semi-locally-connected at x and

Received by the editors March 17, 1969.

⁽¹⁾ Supported by the Air Force Office of Scientific Research.

M is not aposyndetic at x with respect to y. The last result of this paper indicates that if p and q are distinct points of M and no point of M cuts M weakly between p and q, then there is a simple closed curve in M which contains $\{p, q\}$. Examples are given which rule out certain extensions of these results. For definitions of unfamiliar terms and phrases see [5].

2. Aposyndetic continua.

DEFINITION. Let y and z be two distinct points of a compact metric continuum M. Define L_{yz} to be the point set consisting of y, z, and all points x in $M - \{y, z\}$ such that M is not aposyndetic at x with respect to $\{y, z\}$. If M is aposyndetic and there exist distinct points x, y, and z in M such that M is not aposyndetic at x with respect to $\{y, z\}$, then L_{yz} is a subcontinuum of M [6, Theorem 3].

THEOREM 1. Suppose that M is an aposyndetic compact metric continuum and x, y, and z are distinct points of M such that M is not aposyndetic at x with respect to $\{y,z\}$. Then there exist two disjoint open sets U and V in $M-\{x\}$ containing y and z respectively such that if U' is an open set in U which contains y and V' is an open set in V which contains z, then the x-component of $L_{yz}-(U'\cup V')$ meets both $Bd\ U'$ (the boundary of U') and $Bd\ V'$.

Proof. Since M is a posyndetic at x, there exist continua H and K in $M-\{y\}$ and $M-\{z\}$ respectively such that x is contained in both Int H (the interior of H) and Int K. Define U and V to be disjoint open sets such that $y \in U \subset M - H$ and $z \in V \subset M - K$. Let U' be an open subset of U containing y and let V' be an open subset of V containing z. Let U_1, U_2, U_3, \ldots and V_1, V_2, V_3, \ldots be two monotone descending sequences of circular open sets which are centered on and converge to y and z respectively such that $U_1 \subset U'$ and $V_1 \subset V'$. For each positive integer n, there exists a point x_n in Int $H \cap I$ Int K such that (1) the distance from x to x_n is less than 1/n, (2) the set X_n which is the x_n -component of $M-(U_n \cup V_n)$ meets both Bd U_n and Bd V_n , and does not contain the point x, and (3) for each positive integer m less than n, $X_m \cap X_n = \emptyset$. The limit superior X of X_1, X_2, X_3, \ldots is a continuum which contains $\{x, y, z\}$.

Let w be a point of $X-\{y,z\}$. Suppose that M is a posyndetic at w with respect to $\{y,z\}$. There exist an integer m and a continuum F such that (1) w is in Int F, (2) F is in $M-(U_m\cap V_m)$, and (3) $X_m\cap F\neq\varnothing$. It follows that for each integer m greater than m, the set X_n does not meet F. But this contradicts the fact that w is in the limit superior of X_1, X_2, X_3, \ldots Hence M is not a posyndetic at any point of $X-\{y,z\}$ with respect to $\{y,z\}$.

For each positive integer n, define X'_n to be the x_n -component of $M-(U'\cup V')$. Note that for each n, since x_n is in Int $H\cap \text{Int } K$, X'_n meets both Bd U' and Bd V'. Also note that for each n, X'_n is contained in X_n . Define X' to be the limit superior of X'_1 , X'_2 , X'_3 , It follows that X' is a subcontinuum of X which meets both Bd U' and Bd V'. Hence the x-component of $L_{yz}-(U'\cup V')$ meets both Bd U' and Bd V'.

DEFINITION. Let M be an aposyndetic compact metric continuum and let x, y, and z be distinct points of M such that M is not aposyndetic at x with respect to $\{y, z\}$. There exist disjoint open sets U and V in $M-\{x\}$ containing y and z respectively such that if U' is an open subset of U which contains y and V' is an open subset of V which contains z, then the x-component of $L_{yz}-(U'\cup V')$ meets both Bd U' and Bd V' (Theorem 1). Let U_1, U_2, U_3, \ldots and V_1, V_2, V_3, \ldots be two monotone descending sequences of circular open sets in M which are centered on and converge to y and z respectively such that $U_1 \subset U$ and $V_1 \subset V$. For each positive integer n, define Y_n to be the x-component of $L_{yz}-(U_n \cup V_n)$. Define L_{yz}^x to be the limit superior of Y_1, Y_2, Y_3, \ldots Since for each n, the continuum Y_n meets both Bd U_n and Bd V_n, L_{xz}^x is a continuum which contains $\{x, y, z\}$.

Throughout this paper S is the set of points of a simple closed surface (that is, a 2-sphere).

THEOREM 2. If an aposyndetic continuum M in S contains distinct points, x, y, and z such that M is not aposyndetic at x with respect to $\{y, z\}$, then the subcontinuum L_{yz}^{x} (as previously defined) of M is locally connected.

Proof. Let U_1, U_2, U_3, \ldots and V_1, V_2, V_3, \ldots be two monotone descending sequences of circular regions in $S-\{x\}$ which are centered on and converge to y and z respectively such that $U_1 \cap V_1 = \emptyset$. As in the preceding definition, for each positive integer n, let Y_n be the x-component of $L_{yz}-(U_n \cup V_n)$. L_{yz}^x is the limit superior of Y_1, Y_2, Y_3, \ldots Suppose that L_{yz}^x is not locally connected. It follows that L_{yz}^x is not connected im kleinen at some point v in $L_{yz}^x-\{x,y,z\}$. There exist two circular regions T and W in S centered on v such that

- (1) $T \supset Cl W$ (Cl W is the closure of W),
- (2) $\{x, y, z\} \cap \operatorname{Cl} T = \emptyset$, and
- (3) there exists a sequence of mutually exclusive continua H_1, H_2, H_3, \ldots in $L_{uz}^x \cap (\operatorname{Cl} T - W)$ such that each continuum meets both Bd T and Bd W and the limit inferior of the sequence is a continuum [5, Theorem 66, p. 124]. Let q be a point of the limit inferior of H_1, H_2, H_3, \ldots which is not in Bd $T \cup$ Bd W. Let q_1, q_2, q_3, \dots be a sequence of points converging to q such that for each positive integer $n, q_n \in H_n \cap (T - Cl\ W)$. Let Q_1, Q_2, Q_3, \ldots be a sequence of mutually disjoint circular open sets in M which converges to q such that for each positive integer n, the open set Q_n is centered on q_n and Cl Q_n is contained in T-Cl W. For each positive integer n, there exists an integer i such that $Y_i \cap Q_n \neq \emptyset$. It follows that there exists a sequence of mutually exclusive continua I_1, I_2, I_3, \ldots in $L_{vz}^x \cap (\operatorname{Cl} T - W)$ such that for each positive integer n, there exists an integer i such that $I_n \subset Y_i$ and the limit inferior I of I_1, I_2, I_3, \ldots is a continuum which contains q and meets Bd (Cl T-W). There exist a point p and two circular regions R and E $(R \supset Cl\ E)$ centered on q in T-W such that (1) the point p is in $(R-Cl\ E)\cap I$ and (2) there exists a sequence of mutually disjoint continua F_1, F_2, F_3, \ldots such that for each positive integer n, there exists an integer i such

that F_n is in $I_i \cap (Cl\ R-E)$, F_n meets both Bd R and Bd E, and the limit inferior of F_1, F_2, F_3, \ldots is a continuum in L_{yz}^x which contains p.

Assume without loss of generality that the sequence F_1, F_2, F_3, \ldots is such that for each positive integer n, there exist two arc-segments R_n and E_n such that (1) $R_n \subset \operatorname{Bd} R$, (2) $E_n \subset \operatorname{Bd} E$, and (3) each arc-segment meets F_1, F_2, F_3, \ldots only in F_{2n} and has one endpoint in F_{2n-1} and the other endpoint in F_{2n+1} . Let p_1, p_2, p_3, \ldots be a sequence of points converging to p such that for each positive integer n, the point p_n is in $F_{2n} \cap (R - \operatorname{Cl} E)$. Let P_1, P_2, P_3, \ldots be a sequence of circular regions in S such that for each positive integer n, the region P_n is centered on p_n and $\operatorname{Cl} P_n$ does not meet $F_{2n-1} \cup F_{2n+1} \cup R_n \cup E_n$. The regions of the sequence P_1, P_2, P_3, \ldots are mutually exclusive and converge to p.

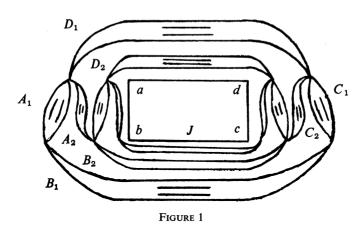
There exist subsequences $U_{n_1}, U_{n_2}, U_{n_3}, \dots$ and $V_{n_1}, V_{n_2}, V_{n_3}, \dots$ U_1, U_2, U_3, \ldots and V_1, V_2, V_3, \ldots respectively such that $\operatorname{Cl} U_{n_1} \cap \operatorname{Cl} R = \emptyset$, Cl V_n , \cap Cl $R = \emptyset$, and for each positive integer k, the set $F_{2k-1} \cup F_{2k} \cup F_{2k+1}$ is in the x-component of $M-(U_{n_k}\cup V_{n_k})$. The component of $M-(U_{n_1}\cup V_{n_1})$ which contains p_1 is not open relative to M at p_1 . Hence the boundary of P_1 contains an arc-segment S_1 whose endpoints a_1 and b_1 lie in different components of $M-(U_n, \cup V_n)$ such that $M \cap S_1 = \emptyset$. There exists a simple closed curve C_1 which separates a_1 from b_1 in S and contains no point of $M-(U_{n_1} \cup V_{n_2})$ such that $C_1 \cap S_1$ is connected. In C_1 there exists an arc-segment T_1 which crosses S_1 , contains no point of $M \cup \operatorname{Cl} U_{n_1} \cup \operatorname{Cl} V_{n_2}$, and has its endpoints in Bd $U_{n_1} \cup \text{Bd } V_{n_2}$. The component of $M - (U_{n_2} \cup V_{n_2})$ which contains p_2 is not open relative to M at p_2 . Hence the boundary of P_2 contains an arc-segment S_2 whose endpoints a_2 and b_2 lie in different components of $M-(U_{n_2} \cup V_{n_2})$ such that $M \cap S_2 = \emptyset$. There is a simple closed curve C_2 in $U_{n_2} \cup V_{n_2} \cup (S-M)$ which separates a_2 from b_2 in S such that $C_2 \cap S_2$ is connected. In C_2 there is an arcsegment T_2 which crosses S_2 , contains no point of $M \cup U_{n_2} \cup V_{n_2}$, and has its endpoints in Bd $U_{n_2} \cup \text{Bd } V_{n_2}$. Continue this process. For each positive integer k, there exist two arc-segments S_k and T_k and a simple closed curve C_k such that (1) S_k has endpoints a_k and b_k in M and is contained in $(S-M) \cap \operatorname{Bd} P_k$, (2) C_k separates a_k from b_k and contains no point of $M-(U_{n_k}\cup V_{n_k})$, (3) $C_k\cap S_k$ is connected, and (4) T_k is contained in $C_k - (U_{n_k} \cup V_{n_k})$, meets S_k , and has its endpoints in Bd $U_{n_k} \cup \text{Bd } V_{n_k}$. For each positive integer k, since $F_{2k-1} \cup F_{2k} \cup F_{2k+1}$ is in the x-component of $M-(U_{n_k}\cup V_{n_k})$, one of the two arcs R_k or E_k must meet points of T_k which precede, and points of T_k which follow $S_k \cap T_k$, with respect to the order of T_k . It follows that for each positive integer k, there exists an arc A_k contained in R_k or contained in E_k such that $A_k \cup T_k$ contains a simple closed curve J_k which separates a_k from b_k in S [5, Theorem 32, p. 181]. The sequence of arcs A_1, A_2, A_3, \ldots has a limit point u in $M \cap Bd$ (Cl R-E). Since M is aposyndetic, there exist a subcontinuum L of M and a region G containing u such that the point p is in Int L and $G \cap L = \emptyset$. There is a positive integer j such that if k is an integer greater than j, then a_k and b_k are in Int L. Hence for some integer n,

the points a_n and b_n are in L and the arc A_n is contained in G. The simple closed curve J_n separates a_n from b_n in S and does not meet L. This contradicts the fact that L is connected. It follows that $L_{n_0}^{x}$ is locally connected.

THEOREM 3. If an aposyndetic compact plane continuum M contains a finite set of points F such that for each point x in M-F, there exist points y and z in F such that M is not aposyndetic at x with respect to $\{y, z\}$, then M is arcwise connected.

Proof. Define C to be the finite collection of continua $\{L_{yz} \mid \{y, z\} \subseteq F \text{ and } L_{yz} \text{ is a continuum}\}$. Since M is connected, C is a coherent collection which covers M. Each element of C is arcwise connected (Theorem 2). Therefore M is arcwise connected.

EXAMPLE 1. An aposyndetic compact plane continuum M which contains a countable closed set of points F such that for each point x in M-F, there exist two points y and z in F such that M is not aposyndetic at x with respect to $\{y, z\}$, need not be arcwise connected. To see this consider the compact plane continuum M which consists of a simple closed curve J and four sequences of Cantor suspensions $A_1, A_2, A_3, \ldots, B_1, B_2, B_3, \ldots, C_1, C_2, C_3, \ldots$, and D_1, D_2, D_3, \ldots (2). The elements of these sequences are joined together at their endpoints and limit on J as indicated in Figure 1.



Let a, b, c, and d denote the four points of J which are limit points of the set consisting of all endpoints of Cantor suspensions in M. Define F to be the set consisting of a, b, c, d, and all endpoints of Cantor suspensions in M. F is closed and countable, and for each point x in M-F, there exist points y and z in F such

⁽²⁾ A Cantor suspension is a continuum which is the upper semicontinuous decomposition of the topological product of the unit interval [0, 1] and the Cantor discontinuum C in which the sets $0 \times C$ and $1 \times C$ are points. These sets are referred to as endpoints of the Cantor suspension.

that M is not aposyndetic at x with respect to $\{y, z\}$. Since no arc in M meets both J and M-J, M is not arcwise connected.

EXAMPLE 2. An aposyndetic compact continuum H in Euclidean 3-space which contains points y and z such that for each point x in $H-\{y,z\}$, H is not aposyndetic at x with respect to $\{y,z\}$, may fail to be arcwise connected. Jones describes a compact plane continuum M consisting of all circles centered on $(\frac{1}{2},0)$ and passing through a point of the Cantor discontinuum on the interval from 0 to 1 on the x-axis, together with alternating vertical and horizontal arcs which are each considered to be a point [4, Example 6]. M is aposyndetic and not arcwise connected. Let v and w be distinct points of the circle of largest diameter in M. Let C denote the Cantor discontinuum. Consider the collection of subsets of $M \times C$ which consist of the sets $v \times C$ and $w \times C$, and points of $M \times C - \{v, w\} \times C$. This collection is upper semicontinuous. With respect to its elements as points, this collection is a continuum H which is aposyndetic and can be embedded in Euclidean 3-space. For each point x in $H-\{y,z\} \times C$, H is not aposyndetic at x with respect to $\{y,z\} \times C$. Obviously H is not arcwise connected.

THEOREM 4. Suppose that M is an aposyndetic compact metric continuum and x, y, and z are distinct points of M such that M is not aposyndetic at x with respect to $\{y, z\}$. Then no point of $L_{yz}^{x} - \{x, y, z\}$ cuts L_{yz}^{x} weakly between x and $\{y, z\}$ (that is, for each point p in $L_{yz}^{x} - \{x, y, z\}$, there is a continuum in $L_{yz}^{x} - \{p\}$ which meets both x and $\{y, z\}$).

Proof. Assume that there exists a point q in $L_{yz}^x - \{x, y, z\}$ which cuts L_{yz}^x weakly between x and $\{y, z\}$. Since M is aposyndetic, there exists a continuum H in $M - \{q\}$ which contains x in its interior. Note that H meets $\{y, z\}$. Now $H \cap L_{yz}$ contains no subcontinuum which meets both x and $\{y, z\}$. To see this assume without loss of generality that $H \cap L_{yz}$ contains a subcontinuum L which contains x and y. The subcontinuum of L irreducible from x to y is in L_{yz}^x which contradicts the assumption that q cuts L_{yz}^x weakly between x and $\{y, z\}$. It follows that $H \cap L_{yz}$ is the union of disjoint closed sets A and B containing x and $\{y, z\} \cap H$ respectively. There exist disjoint open sets U and V which contain A and B respectively. $H - (U \cup V)$ is a closed subset of $M - L_{yz}$. Let Q be a finite collection of continua in $M - \{y, z\}$ which cover $H - (U \cup V)$. The set $(U \cap H) \cup St$ Q (St Q consists of points which are contained in an element of Q) has a finite number of components each of which is closed relative to M. It follows that x is in the interior of one of these components. Since $(U \cap H) \cup St$ Q is a subset of $M - \{y, z\}$, this is a contradiction. Therefore q does not cut L_{yz}^x weakly between x and $\{y, z\}$.

THEOREM 5. If an aposyndetic compact plane continuum M contains points w, x, y, and z such that M is not aposyndetic at either w or x with respect to $\{y, z\}$ and w is not in L^x_{yz} , then the continuum $L^w_{yz} \cup L^w_{yz}$ is cyclicly connected.

Proof. $L_{yz}^w \cup L_{yz}^x$ is locally connected (Theorem 2). Since no point of $\{y, z\}$ separates either L_{yz}^w or L_{yz}^x and $L_{yz}^w \cap L_{yz}^x = \{y, z\}$, no point of $\{y, z\}$ separates

 $L_{yz}^w \cup L_{yz}^x$. Suppose there is a point q in $(L_{yz}^w \cup L_{yz}^x) - \{y, z\}$ which separates $L_{yz}^w \cup L_{yz}^x$. Assume without loss of generality that q is in L_{yz}^w . Then L_{yz}^x is in a component of $(L_{yz}^w \cup L_{yz}^x) - \{q\}$. It follows that q cuts L_{yz}^w between a point of $L_{yz}^w - \{y, z\}$ and $\{y, z\}$. This is impossible (Theorem 4). Hence $L_{yz}^w \cup L_{yz}^x$ does not contain a separating point and is cyclicly connected [7].

THEOREM 6. If an aposyndetic compact plane continuum M contains points y and z such that for each point x in $M-\{y,z\}$, M is not aposyndetic at x with respect to $\{y,z\}$, then M is cyclicly connected.

Proof. For any two points a and b in M, there exist points x and w in $M - \{y, z\}$ such that w is not contained in L_{yz}^x and the cyclicly connected continuum $L_{yz}^w \cup L_{yz}^x$ contains $\{a, b\}$.

THEOREM 7. If an aposyndetic compact plane continuum M contains a finite set of points F such that for each point x in M-F, there exist points y and z in F such that M is not aposyndetic at x with respect to $\{y, z\}$, then each point of M is in a simple closed curve which is contained in M.

Proof. For each point x in M, define H_x to be the finite collection

 $\{L_{uz}^x \mid M \text{ is not aposyndetic at } x \text{ with respect to } \{y, z\} \text{ and } \{y, z\} \subseteq F - \{x\}\}.$

For each point x in M, if H_x is nonvoid, then St H_x is a locally connected continuum (Theorem 2) which does not contain an open subset of M. If M is connected im kleinen at x, then H_x is void. Let p be a point of M. There exists an infinite sequence x_1, x_2, x_3, \ldots of points of M such that $x_1 = p$ and for each positive integer n, x_{n+1} is in $M - (F \cup \bigcup_{i=1}^n \operatorname{St} H_{x_i})$ and the distance between x_{n+1} and p is less than 1/n. Suppose there exist a subsequence $x_{n_1}, x_{n_2}, x_{n_3}, \ldots$ of x_1, x_2, x_3, \ldots and points p and p in p such that for each positive integer p is not aposyndetic at p with respect to p such that p is not aposyndetic at p with respect to p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p with respect to p such that p is not aposyndetic at p with respect to p such that p is a point of p such that p is not aposyndetic at p

If no such subsequence of x_1, x_2, x_3, \ldots exists, then there exist distinct points w and x ($p \notin \{w, x\}$) in x_1, x_2, x_3, \ldots and a point z in F such that M is not aposyndetic at either w or x with respect to $\{p, z\}$. It follows that the locally connected continuum $L_{pz}^w \cup L_{pz}^x$ is cyclicly connected (Theorem 5).

EXAMPLE 3. An aposyndetic compact plane continuum M which contains a countable closed set of points F such that for each point x in M-F, there exist points y and z in F such that M is not aposyndetic at x with respect to $\{y, z\}$, may contain a point which is not in a simple closed curve in M. To see this consider a plane continuum M which consists of an arc A with endpoints a and b, and a sequence of mutually exclusive Cantor suspensions A_1, A_2, A_3, \ldots such that (1) for each positive integer n, a_n and b_n are the endpoints of A_n and $A \cap A_n = \{a_n, b_n\}$,

(2) the sequences a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots converge to a and b respectively, and (3) A is the limit set of A_1, A_2, A_3, \ldots . Let F be the union of the closures of a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots . For each point x in M-F either there exists a positive integer n such that x is contained in A_n in which case M is not aposyndetic at x with respect to $\{a_n, b_n\}$, or x is contained in A and M is not aposyndetic at x with respect to $\{a, b\}$. No simple closed curve in M meets $\{a, b\}$.

3. Nonaposyndetic continua.

DEFINITION. For a point y of a continuum M, Jones defines L_y to be the subcontinuum of M consisting of y and all points x in $M-\{y\}$ such that M is not aposyndetic at x with respect to y [3, Theorem 3]. Let x and y be distinct points of a compact metric continuum M such that M is not aposyndetic at x with respect to y. Let V_1, V_2, V_3, \ldots be a monotone descending sequence of circular open subsets of M ($x \notin V_1$) which are centered on and converge to y. For each positive integer n, let Y_n be the x-component of $L_y - V_n$. Define L_y^x to be the limit superior of Y_1, Y_2, Y_3, \ldots The set L_y^x is a subcontinuum of M which contains x and y. M is not aposyndetic at any point of L_y^x with respect to y.

Recall that for a point z in M, the set K_z consists of z and all points y of $M - \{z\}$ such that M is not aposyndetic at z with respect to y.

THEOREM 8. Suppose that M is a continuum in S such that for each point z of M, the set K_z is countable. Then if x and y are distinct points of M such that M is not aposyndetic at x with respect to y, the subcontinuum L_y^x (as previously defined) of M is locally connected.

Proof. Let V_1, V_2, V_3, \ldots be a monotone descending sequence of circular regions in $S(x \notin V_1)$ which are centered on and converge to the point y. As in the definition of L_v^x , for each positive integer n, let Y_n be the x-component of $L_v - V_n$. L_y^x is the limit superior of Y_1, Y_2, Y_3, \ldots Assume that L_y^x is not locally connected. It follows that L_v^x is not connected im kleinen at some point p in $L_v^x - \{x, y\}$. There exist two circular regions V and W in S centered on p such that (1) $V \supset Cl W$, (2) $\{x, y\} \cap Cl \ V = \emptyset$, and (3) there exists a sequence of mutually exclusive continua H_1, H_2, H_3, \ldots in $L_v^x \cap (\operatorname{Cl} V - W)$ such that each continuum meets both Bd V and Bd W and the limit inferior of the sequence is a continuum [5, Theorem 66, p. 124]. Let q be a point of the limit inferior of H_1, H_2, H_2, \ldots which is not in Bd $V \cup$ Bd W. Let q_1, q_2, q_3, \ldots be a sequence of points converging to q such that for each positive integer $n, q_n \in H_n \cap (V-Cl\ W)$. Let Q_1, Q_2, Q_3, \ldots be a sequence of mutually exclusive circular open sets in M which converges to q and has the property that for each positive integer n, the open set Q_n is centered on q_n and Cl Q_n is contained in V-Cl W. For each positive integer n, there exists an integer i such that $Y_i \cap Q_n$ $\neq \emptyset$. It follows that there exists a sequence of mutually exclusive continua I_1, I_2, I_3, \ldots in $L_x^y \cap (\operatorname{Cl} V - W)$ such that for each positive integer n, there exists an integer i such that $I_n \subseteq Y_i$ and the limit inferior I of I_1, I_2, I_3, \ldots is a continuum which contains q and meets Bd (Cl V-W). Since the set K_z is countable

for each point z in M, there exist a point z and two circular regions R and E (Cl $E \subseteq R$) centered on q in V - W such that (1) the point z is in $(R - \text{Cl } E) \cap I$, (2) M is aposyndetic at z with respect to each point of $M \cap \text{Bd}$ (Cl R - E), and (3) there exists a sequence of mutually exclusive continua F_1, F_2, F_3, \ldots such that for each positive integer n, there exists an integer i such that F_n is in $I_i \cap (\text{Cl } R - E)$, F_n meets both Bd R and Bd E, and the limit inferior of F_1, F_2, F_3, \ldots is a continuum in M which contains z.

Assume without loss of generality that the sequence F_1, F_2, F_3, \ldots is such that for each positive integer n, there exist arc-segments R_n and E_n such that (1) $R_n \subset \operatorname{Bd} R$, (2) $E_n \subset \operatorname{Bd} E$, and (3) each arc-segment meets F_1, F_2, F_3, \ldots only in F_{2n} and has one endpoint in F_{2n-1} and the other endpoint in F_{2n+1} . Let z_1, z_2, z_3, \ldots be a sequence of points converging to z such that for each positive integer n, the point z_n is in $F_{2n} \cap (R - \operatorname{Cl} E)$. Let Z_1, Z_2, Z_3, \ldots be a sequence of circular regions in S such that for each positive integer n, the region Z_n is centered on z_n and $\operatorname{Cl} Z_n$ does not meet $F_{2n-1} \cup F_{2n+1} \cup R_n \cup E_n$. Note that the regions of the sequence Z_1, Z_2, Z_3, \ldots are mutually exclusive and converge to z.

There exists a subsequence $V_{n_1}, V_{n_2}, V_{n_3}, \ldots$ of V_1, V_2, V_3, \ldots such that Cl V_n , \cap Cl $R = \emptyset$ and for each positive integer k, the set $F_{2k-1} \cup F_{2k} \cup F_{2k+1}$ is in the x-component of $L_y - V_{n_k}$. The component of $M - V_{n_1}$ which contains z_1 is not open relative to M at z_1 . Hence the boundary of Z_1 contains an arc-segment S_1 whose endpoints a_1 and b_1 lie in different components of $M-V_n$, such that $M \cap S_1 = \emptyset$. There exists a simple closed curve C_1 which separates a_1 from b_1 in S and contains no point of $M-V_{n_1}$ such that $C_1 \cap S_1$ is an arc. In C_1 there exists an arc-segment T_1 which crosses S_1 , contains no point of $M \cup V_{n_1}$, and has its endpoints in Bd V_{n_1} . The component of $M-V_{n_2}$ which contains z_2 is not open relative to M at z_2 . Hence the boundary of Z_2 contains an arc-segment S_2 whose endpoints a_2 and b_2 lie in different components of $M - V_{n_2}$ such that $M \cap S_2 = \emptyset$. There is a simple closed curve C_2 which separates a_2 from b_2 in S and contains no point of $M-V_{n_2}$ such that $C_2 \cap S_2$ is an arc. In C_2 there is an arc-segment T_2 which crosses S_2 , contains no point of $M \cup V_{n_0}$, and has its endpoints in Bd V_{n_0} . Continue this process. For each positive integer k, there exist two arc-segments S_k and T_k such that (1) S_k has endpoints a_k and b_k in M and is contained in $(S-M) \cap \operatorname{Bd} Z_k$, (2) T_k contains no point of $M \cup V_{n_k}$, and (3) $T_k \cup \operatorname{Bd} V_{n_k}$ contains a simple closed curve which separates a_k from b_k in S. For each positive integer k, since $F_{2k-1} \cup F_{2k} \cup F_{2k+1}$ is in the x-component of $L_y - V_{n_k}$, one of the two arcs Cl R_k or Cl E_k must meet points of T_k which precede, and points of T_k which follow $S_k \cap T_k$, with respect to the order of T_k . It follows that for each positive integer k, there exists an arc A_k contained in R_k or contained in E_k such that $A_k \cup T_k$ contains a simple closed curve J_k which separates a_k from b_k in S [5, Theorem 32, p. 181]. The sequence of arcs A_1, A_2, A_3, \ldots has a limit point uin $M \cap Bd$ (Cl R-E). Since M is aposyndetic at z with respect to each point of $M \cap Bd$ (Cl R-E), there exist a subcontinuum H of M and a region G in S containing u such that the point z is in the interior of H and $G \cap H = \emptyset$. There exists a positive integer j such that if k is an integer greater than j, then a_k and b_k are in the interior of H. Hence for some integer n, a_n and b_n are in H and A_n is contained in G. The simple closed curve J_n separates a_n from b_n in S and does not meet H. This contradicts the fact that H is a continuum. It follows that L_y^x must be locally connected.

Theorem 9. If M is a compact plane continuum such that M is semi-locally-connected at all except a finite number of its points, and for each point x in M, M is either not aposyndetic at x, or not semi-locally-connected at x, then M is arcwise connected.

Proof. If M is semi-locally-connected, then M is aposyndetic [2]. Hence there exists a nonvoid finite set of points $\{y_1, y_2, \ldots, y_n\}$ in M such that (1) for each i $(i=1, 2, \ldots, n)$, M is not semi-locally-connected at y_i and L_{y_i} is arcwise connected (Theorem 8), and (2) $\bigcup_{i=1}^n L_{y_i} = M$. Since M is the union of a finite number of arcwise connected continua, it is arcwise connected.

COROLLARY. If M is a totally nonaposyndetic compact plane continuum which is semi-locally-connected at all except a finite number of its points, then M is arcwise connected.

Example 4. A totally nonaposyndetic compact plane continuum which is semi-locally-connected at all except a countable number of its points need not be arcwise connected. To see this consider the compact plane continuum M which consists of two simple closed curves L and J which meet at one point p, and a sequence of Cantor suspensions S_1, S_2, S_3, \ldots (each suspension having its end-points identified) such that $S_1 \cap L = \{p, q\} (q \text{ is the endpoint of } S_1)$, and S_2, S_3, S_4, \ldots are joined together and limit on L and J as indicated in Figure 2. M is totally nonaposyndetic and is semi-locally-connected at all points except p, and the end-points of the elements of S_1, S_2, S_3, \ldots But there does not exist an arc in M which has one endpoint in S_2 and the other in L. Note that for each point x of M, the set K_x consists of only two points.

The next two examples indicate that these results do not hold in Euclidean 3-space.

EXAMPLE 5. A totally nonaposyndetic compact continuum in Euclidean 3-space which is semi-locally-connected at all but a finite number of its points may fail to be arcwise connected. Let M be the plane continuum described by Jones which is aposyndetic and not arcwise connected [4, Example 6]. Let v be a point on the circle of largest diameter in M. Let C denote the Cantor discontinuum. Consider the collection of subsets of $M \times C$ which consists of the set $v \times C$ and points of $M \times C - v \times C$. This collection is upper semicontinuous. With respect to its elements as points, this collection is a continuum H which is semi-locally-connected

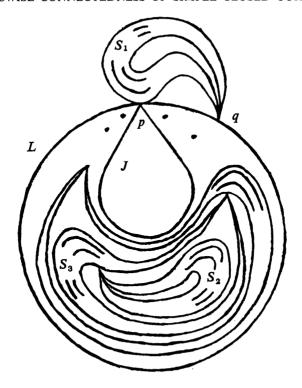


FIGURE 2

at each point of $H-v\times C$ and is not aposyndetic at any point of $H-v\times C$ with respect to the point $v\times C$. H is not arcwise connected. But H is aposyndetic at $v\times C$. However, by appropriately joining two copies of H, it is possible to construct a totally nonaposyndetic compact continuum in Euclidean 3-space which is semi-locally-connected at all but two of its points and is not arcwise connected.

EXAMPLE 6. There exists in Euclidean 3-space a totally nonaposyndetic compact continuum which is semi-locally-connected at all but two of its points and does not contain an arc. To see this let p be a point of a nondegenerate chainable hereditarily indecomposable continuum P(P) is the pseudo-arc) and define G to be the collection of subsets of $P \times P$ consisting of the set $p \times P$ and points of $P \times P - p \times P$. G is upper semicontinuous. Since $P \times P$ can be embedded in Euclidean 3-space [1], with respect to its elements as points, G is a continuum M in Euclidean 3-space. M is semi-locally-connected at each point of $M - p \times P$ and is not aposyndetic at any point of $M - p \times P$ with respect to the point $p \times P$. Since P is hereditary indecomposable, M does not contain an arc. M is aposyndetic at the point $p \times P$. However, by appropriately connecting two copies of this continuum, one can construct a totally nonaposyndetic continuum in Euclidean 3-space which is semi-locally-connected at all but two of its points and does not contain an arc.

Theorem 10. Suppose that x and y are points of a compact metric continuum M such that M is not aposyndetic at x with respect to y. Then if a point q of $L_y^x - \{x, y\}$ cuts M weakly between x and y, M is not aposyndetic at x with respect to q.

Proof. Assume that a point q of $L_y^x - \{x, y\}$ cuts M weakly between x and y, and M is aposyndetic at x with respect to q. There exists a continuum H in $M - \{q\}$ which contains x in its interior. $H \cap L_y$ contains no subcontinuum containing both x and y. To see this suppose there is a subcontinuum L of $H \cap L_y$ which contains $\{x, y\}$. Let I be a subcontinuum of L which is irreducible from x to y. I is contained in L_y^x . Therefore q is in I. Since H is in $M - \{q\}$, this is impossible. It follows that $H \cap L_y$ is the union of disjoint closed sets A and B containing x and y respectively. There exist disjoint open sets U and V which contain A and B respectively. $H - (U \cup V)$ is a closed subset of $M - L_y$. Let Q be a finite collection of continua in $M - \{y\}$ which covers $H - (U \cup V)$. The set $(U \cap H) \cup St$ Q has a finite number of components each of which is closed relative to M. It follows that x is in the interior of one of these components. Since this component is contained in $M - \{y\}$, this is a contradiction. Hence M is not aposyndetic at x with respect to q.

THEOREM 11. If M is a compact plane continuum such that for each point x in M, the set K_x is finite, and M is either not semi-locally-connected at x or not aposyndetic at x, then each point of M is in a simple closed curve which is contained in M.

Proof. If p is a point of M and M is not semi-locally-connected at p, then there exists a point x in M such that M is not aposyndetic at x with respect to p. Since the continuum L_p^x is locally connected (Theorem 8) and K_x is finite, there exists a point q in L_p^x such that no point of L_p^x separates p from q in L_p^x (Theorem 10). It follows that L_p^x contains a simple closed curve which contains p and q [7]. If M is semi-locally-connected at p, then there exists a point p in p such that p is not aposyndetic at p with respect to p. It follows from the same argument that in p there is a simple closed curve which contains p.

Note that the continuum M in Example 4 has all the properties stated in Theorem 11.

COROLLARY. If M is a totally nonaposyndetic compact plane continuum which is semi-locally-connected at all except a finite number of its points, then each point of M is in a simple closed curve which is contained in M.

EXAMPLE 7. If M is a totally nonaposyndetic compact plane continuum such that for each point x in M, the set K_x is countable, then each point of M need not be contained in a simple closed curve. To see this consider the plane continuum M consisting of four sequences of Cantor suspensions $R_1, R_2, R_3, \ldots, S_1, S_2, S_3, \ldots, T_1, T_2, T_3, \ldots$, and Y_1, Y_2, Y_3, \ldots (each suspension having its endpoints identified), and a point p such that (1) S_1, S_2, S_3, \ldots and T_1, T_2, T_3, \ldots converge to p, (2) for each positive integer i, R_i and Y_i have the same endpoint, and (3) the sets

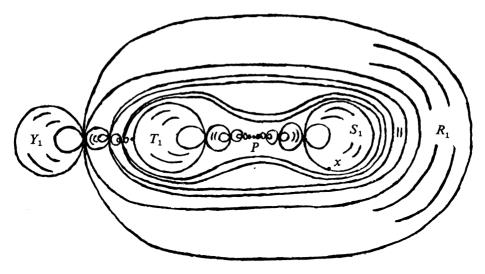


FIGURE 3

 R_1, R_2, R_3, \ldots loop around and limit on a subset of $\bigcup_i S_i \cup T_i$ as indicated in Figure 3. M is totally nonaposyndetic. The point p is not in a simple closed curve contained in M. Note that if x is a point of S_1 which is in the limit set of R_1, R_2, R_3, \ldots then the set K_x is countably infinite.

THEOREM 12. Suppose that M is a compact plane continuum which contains a point y such that for each point x in $M-\{y\}$, M is semi-locally-connected at x and M is not aposyndetic at x with respect to y. Then if p and q are distinct points of M and no point cuts M weakly between p and q, there exists a simple closed curve in M which contains $\{p, q\}$.

Proof. Assume without loss of generality that $p \neq y$. The point q is in L_y^p for if it were not y would cut M weakly between p and q. L_y^p is locally connected (Theorem 8) and does not contain a separating point (Theorem 10). Hence in L_y^p there is a simple closed curve which contains $\{p, q\}$.

The following example indicates that the words "cuts M weakly" in the statement of Theorem 12 cannot be replaced by "separates M".

EXAMPLE 8. Let I be the unit interval and let C be the Cantor discontinuum in I. For each point r in I, let V(r) be the vertical line $\{(r, y) \mid y \in I\}$ in $I \times I$. For each positive integer n, define T_n to be the collection

{Cl $H \mid H$ is an open segment in $(V(1/3n) \cup V(1-1/3n)) - I \times C$ which has both endpoints in $I \times C$ and diameter 1/3n}.

Let G be the collection consisting of $\bigcup_{n=1}^{\infty} T_n$, the set $V(0) \cup V(1)$, and points of $I \times C - (V(0) \cup V(1) \cup \bigcup_{n=1}^{\infty} \operatorname{St} T_n)$. G is upper semicontinuous. With respect to its elements as points, G is a continuum M. For each point x in $M - (V(0) \cup V(1))$,

M is semi-locally-connected at x and is not aposyndetic at x with respect to the point $V(0) \cup V(1)$. M does not contain a separating point and is not cyclicly connected. Note that $V(0) \cup V(1)$ is a weak cut point in M.

BIBLIOGRAPHY

- 1. R. Bennett, Embedding products of chainable continua, Proc. Amer. Math. Soc. 16 (1965), 1026-1027.
- 2. F. B. Jones, Aposyndetic continua and certain boundary problems, Amer. J. Math. 63 (1941), 545-553.
 - 3. ——, Concerning non-aposyndetic continua, Amer. J. Math. 70 (1948), 403-413.
- 4. ——, Concerning aposyndetic and non-aposyndetic continua, Bull. Amer. Math. Soc. 58 (1952), 137-151.
- 5. R. L. Moore, Foundations of point-set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R. I., 1962.
- 6. E. J. Vought, n-aposyndetic continua and cutting theorems, Trans. Amer. Math. Soc. 140 (1969), 127-135.
- 7. G. T. Whyburn, Cyclicly connected continuous curves, Proc. Nat. Acad. Sci. U.S.A. 13 (1927), 31-38.
 - 8. ——, Semi-locally-connected sets, Amer. J. Math. 61 (1939), 733-749.

California Institute of Technology, Pasadena, California